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1. Introduction
Induction machines are widely used in many industrial and research applications. These machines possess well-
known advantages, such as reliability, robustness and affordability. In order to fulfil the performance requirements, 
induction machine drives need to be controlled. The most commonly used control methods for induction machines 
are field-oriented control (FOC) and direct torque control (DTC), as discussed and compared by Orłowska-Kowalska 
and Dybkowski (2016) and Casadei et al. (2002). The two main types of FOC schemes are indirect field–oriented 
control (IFOC) and direct field–oriented control (DFOC). These FOC structures are discussed by Liu et al. (2015) 
and De Pelegrin et al. (2016). A possible variant of the DFOC algorithm is the direct rotor field–oriented control 
(DRFOC), where the applied reference frame is fixed to the rotor flux. In addition to FOC structures in induction 
machine control, different DTC schemes are also used, e.g. direct self-control (DSC) and direct torque control–
space vector modulation (DTC-SVM), as discussed by Orłowska-Kowalska and Dybkowski (2016). Using FOC or 
DTC methods, the electromagnetic torque and flux of the machine can be controlled independently.

Usually, these control techniques obtain the speed and position information from a rotary sensor, such as a 
resolver or an encoder. These sensors, however, might be expensive parts and can be error prone if used under 
harsh operating conditions. Therefore, elimination of these sensors has many advantages: for instance, reduced 
cost, increased reliability and smaller size can be achieved. In order to eliminate the rotary sensors in induction 
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machine control, the so-called speed sensorless control methods have been developed. Usually, speed sensorless 
control solutions may rely on signal injection, on deterministic observers or on stochastic estimators, as described 
by Holtz (2006).

In estimator-based methods, the performance in terms of control depends on the applied estimator type. The 
most widely used estimator type is the regular linear Kalman filter, which is described by Kalman (1960), Auger 
et al. (2013) and Šlapák et al. (2016b). In the case of induction machines, non-linear state estimators are usually 
needed due to the non-linear behaviour of machine models and control algorithms. In Kim et al. (1994) and Leite 
et al. (2004), application of the extended Kalman filter (EKF) is discussed for a speed sensorless FOC algorithm. 
EKF is a possible extension of the regular linear Kalman filter for non-linear estimation and based on Taylor series 
expansion, as described by Šlapák et al. (2016a). In addition to other techniques, EKF is also applied in speed 
sensorless control of an induction machine in the study by Fodor and Tóth (2004).

An alternative method for non-linear Kalman filtering is the unscented Kalman filter (UKF), which applies the 
unscented transformation (UT) in the prediction step of a regular Kalman filter, as described by Julier and Uhlmann 
(1997) and Julier et al. (2000). The principle of UKF generalises the Kalman filter without linearisation for non-linear 
systems, as introduced in the paper by Julier and Uhlmann (1997). The behaviour of induction machines may be 
described by strongly non-linear models with sufficient accuracy; therefore, adequate estimation performance can 
be provided by non-linear UKF, in contrast to the linearisation-based observers or estimators. Works by Rigatos and 
Siano (2012), Akin et al. (2006) and Jafarzadeh et al. (2012) focus on the state estimation of induction machines 
using UKF, and these works also provide a comparative analysis between EKF and UKF. In another work (Kumar 
et al., 2011), three different state estimation methods are discussed, such as EKF, UKF and the neural state filter. 
Lešić et al. (2012) apply the dual UKF for the state and parameter estimation of induction machines.

Various types of UKF estimators can be applied in induction machine control systems. The architecture of the 
estimators depends mainly on the selected state variables and the corresponding model equations. Rigatos and 
Siano (2012) present a six-variable dynamic model of the induction machine for use in the UKF design. The state 
variables are the rotor mechanical position and speed, the direct (d) component of the rotor flux, d and quadrature 
(q) components of the stator current and the rotor flux angle. Lešić et al. (2012) use the d and q components of 
the stator current, the magnetising current and the rotor flux angle in the state vector for estimation. In addition, the 
estimated values are applied in a rotor flux–oriented FOC algorithm as well. In the work of Kumar et al. (2011), two 
components of stator current, two components of rotor flux and the mechanical speed of the rotor are estimated by 
UKF. Yildiz et al. (2016) apply a seventh-order induction machine model with UKF estimator in a speed sensorless 
drive, where the estimated state variables are the stator current and rotor flux components, the rotor mechanical 
speed, the load torque and the rotor resistance. A similar work by Yildiz et al. (2017) uses the stator resistance as 
the seventh state variable. In the study by Akin et al. (2006), the electrical rotor speed is used, in addition to the 
stator current and rotor flux components, for estimation in an IFOC algorithm. Jafarzadeh et al. (2012, 2013) use 
six state variables, namely, stator flux components, stator current components, electrical speed of rotor and load 
torque, for estimation in a DTC-based speed control algorithm.

This paper is based on a former conference paper (Horváth and Kuslits, 2017) and presents an estimator-based 
speed sensorless DRFOC solution, where the estimator is based on a seventh-order machine model. The applied 
state variables are the d and q components of the stator currents, the magnetising current, the electrical position and 
speed of the rotor, position of the rotor flux and the load torque. These state variables are selected systematically 
and, as a novelty, all of the electrical and mechanical quantities result directly from this model considering the 
internal friction of the machine as well, just contrary to the preceding works (Akin et al., 2006; Jafarzadeh et al., 2012, 
2013; Kumar et al., 2011; Lešić et al., 2012; Rigatos and Siano, 2012; Yildiz et al., 2016, 2017). The applied state 
space model is defined in the rotor flux frame in order to perform non-linear state estimation in a speed sensorless 
DRFOC structure, which is also presented. Two different variants of this speed sensorless DRFOC algorithm is 
developed using UKF and, in addition to the concept in Horváth and Kuslits (2017), EKF as state estimators. As 
a further novelty relative to Horváth and Kuslits (2017), a comparative performance analysis of these variants is 
carried out by experiments and simulations. In addition to the regular step response analysis, stochastically varying 
load torque is also applied in order to investigate the load estimation and load disturbance rejection performances 
of the EKF- and UKF-based variants.

The paper is organised as follows. In Section 2, the fundamental squirrel-cage induction machine model is 
described, which is applied for control algorithm and estimator design, as well as for simulations. Section 3 describes 
the EKF and UKF algorithms that are used for state estimation in this paper. Section 4 presents the estimator-based 

130



Krisztián Horváth, Márton Kuslits

speed sensorless DRFOC algorithm. Section 5 describes an implementation example, as well as the experimental 
and simulation results. Finally, conclusions are drawn in Section 6.

2. Dynamic model of induction machines
In this section, the well-known dynamic model of induction machines is described in a rotating arbitrary reference 
frame, as discussed by Amezquita-Brooks et al. (2015). Using this lumped parameter-type model, an extended 
seventh-order model of induction machines is introduced in the second part of this section. The applied seventh-
order model is a state space model wherein the reference frame is fixed to the rotor flux. By applying the discrete 
form of the state transition equation in a state estimator algorithm such as EKF or UKF, an estimator-based speed 
sensorless DRFOC algorithm may be developed.

2.1. Model of induction machines in general rotating reference frame
The dynamic model of squirrel-cage induction machines consists of an electrical part and a mechanical part. The 
electrical part of the model is written in an arbitrarily chosen two-phase rotating reference frame, where ω is the 
angular speed of the frame. The two-phase stator voltage equations in this frame are as follows:

 v R i d
dtds s ds ds qs= + ψ − ωψ  (1)

and

 v R i d
dt

,qs s qs qs ds= + ψ + ωψ  (2)

where vds, vqs, ids, iqs, ψds and ψqs are the d and q components of the stator voltage, the stator current and the stator 
flux, and Rs is the stator resistance.

Similarly, rotor voltage equations may be written as

 v R i d
dtdr r dr dr r qr( )= + ψ − ω − ω ψ  (3)

and

 v R i d
dt

,qr r qr qr r dr( )= + ψ + ω − ω ψ  (4)

where vdr, vqr, idr, iqr, ψdr and ψqr are the d and q components of the rotor voltage, the rotor current and the rotor flux, 
analogously to the stator quantities. Rr is the rotor resistance, and ωr is the rotor electrical speed. In squirrel-cage 
induction machines, the rotor electrical circuit is short-circuited, and therefore, conditions vdr = 0 V and vqr = 0 V are 
used afterwards.

The stator and rotor flux equations in Eqs. (1)–(4) may be expressed as follows:

 L i L i ,ds s ds m drψ = +  (5)

 L i L i ,qs s qs m qrψ = +  (6)

 L i L idr r dr m dsψ = +  (7)

and

 L i L iqr r qr m qsψ = +  (8)

where Ls and Lm are the stator and mutual inductances and Lr is the rotor inductance.
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The electromagnetic torque Te follows from the stator current and rotor flux components:

 T N
L
L

i i3
2e

m

r
qs dr ds qr( )= ψ − ψ  (9)

where N is the number of pole pairs.
The equation of motion represents the mechanical behaviour of the model:

 
T D T Td

dt
sgn

m
e m m load0 ( )

ω =
− ω − ω −

θ
 (10)

where ωm is the rotor mechanical speed, D is the viscous friction coefficient, T0 is the static friction, Tload is the external 
load torque and θ is the total inertia. The rotor mechanical speed may be calculated from the rotor electrical speed, 
dividing it by the number of pole pairs: ω = ω

N
1

m r
.

2.2. Rotor flux-oriented state–space model of induction machines
Eqs. (1)–(10) describe the dynamic behaviour of the induction machines in any rotating reference frame, where ω 
is the rotational speed of the frame. In this case, the applied reference frame is fixed to the rotor flux. From this, it 
follows that ψdr is varying but the q component of the rotor flux results as ψqr = 0 Wb. As a further result, Eqs. (3), (4), 
(8) and (9) may be written in a simpler form in the applied frame. In order to simplify the forthcoming expressions, 
let us define the magnetising current as

 i
L

.mr
dr

m
=

ψ
 (11)

Further, imr can be calculated from ids as Imr(s) = G(s)Ids(s) where the transfer function G(s) is

 G s
I s
I s T s

( )
( )
( )

1
1

,mr

ds r
= =

+
 (12)

in which =T
L
Rr
r

r

 is the rotor time constant. Using imr, the position of the rotor flux can be calculated by the following 
expression:

 
R
L

i

i
dt.e r

r

r

qs

mr
∫ϕ = ω +  (13)

In order to simplify the expressions, let us define the leakage inductance as

 
L
L L

1 .m

s r

2
σ = −  (14)

Using Eqs. (1)–(14), the non-linear state transition equation of squirrel-cage induction machines may be written. 
In order to apply the state transition equation for estimator design in the speed sensorless DRFOC algorithm, let 
us define the input vector of the system as u = [vds vqs]

T and the measurement vector as z = [ids iqs]
T. For the detailed, 

self-containing description of the induction machines, a full-order model is necessary, which contains four electrical 
state variables and two mechanical state variables at least. The mechanical state variables are the electrical speed 
(ωr) and position of the rotor (φr), where φr = ∫ ωrdt. The proposed state transition equation may be used in the 
EKF algorithm only with continuous functions. Thus, in the state transition equation, the sign function of Eq. (10) is 
approximated by a sigmoid function as ω ≈

ω

+ ω
sgn( )

1
m

m

m
2

. For the electrical state variables, the d and q components 
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of the stator currents, the magnetising current (imr) and position of rotor flux (φe) are selected. The components of 
the stator currents are necessary for control of both the flux of the machine and the electromagnetic torque. The 
magnetising current is related to the magnitude of rotor flux, and the position of rotor flux is required for coordinate 
transformations. In order to estimate the external load torque, let us extend the full-order state space model with the 
load torque as an additional state variable. By using this extension, the state vector may be defined as x = [ids iqs imr 
φr ωr φe Tload]

T and the state transition equation in continuous time may be written as follows:
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 (15)

Regarding Eq. (18), the measurement matrix of the model can be written as

 H 1 0 0 0 0 0 0
0 1 0 0 0 0 0

.=












 (16)

An important limitation of this model is that it is supposed that all of the model parameters are time-invariant 
constants. In other words, possible parameter variations, e.g. change of the stator resistance as a function of 
temperature, are not considered.

3. The EKF and the UKF state estimator algorithms
In this section, the conventional EKF and the more advanced UKF algorithms are presented. First, the characteristic 
properties and applicability of the EKF and UKF algorithms are discussed. Second, the general equations shared 
by both algorithms are described. Finally, the EKF and UKF algorithms are introduced.

3.1. Characteristics and applicability of the algorithms
Estimation of state variables may be a difficult problem if the observed plant is a non-linear system and the 
noise is stochastic. The simplest way to approach this problem is to linearise the plant model as in the EKF. 
This approximation provides good dynamic behaviour in many applications but may lead to inaccurate results, as 
mentioned by Jafarzadeh et al. (2012). This follows from the assumption that all of the transformations are quasi-
linear. However, the linearisation-based observation and estimation methods suffer a serious limitation due to this 
assumption, because the linearised transformations are only reliable if the error propagation is well approximated 
by a linear function as described in the study by Julier and Uhlmann (2004). The approximation might be extremely 
poor if this assumption is not true.

A further important question is the applicability of the algorithms. Implementation requires similar efforts in both 
cases since the EKF and the UKF rely on the same non-linear state transition equation and the noise covariance 
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parameters are treated similarly as well. Regarding the computational burdens, however, it is clear that the 
UKF requires significantly more real-time calculations due to the UT. Nevertheless, this is not an actual problem 
nowadays because state-of-the-art high-performance multicore microcontrollers with floating point arithmetic, 
field programmable gate array (FPGA), system on chip (SoC) and application-specific integrated circuit (ASIC) 
technologies may provide the necessary computing performance for the practical applications of the UKF-based 
solutions.

3.2. General equations
In order to derive the EKF and UKF algorithms for state estimation, the state transition equation and the measurement 
model have to be defined. The discrete non-linear state transition equation may be written as

 x f x u w,k k k k1 ( )= ++
  (17)

where xk is the state vector, uk is the input vector, wk is the process noise at time k and  ( )f x u,  k k  is a given non-linear 
function. The measurement model in most of the practical applications might be linear and can be written as follows:

 z Hx vk k k= +  (18)

where zk is the measurement vector, vk is the measurement noise at time k and H is the measurement matrix. In 
Eqs. (17) and (18), the elements wk and vk are probabilistic variables. Realisations of wk and vk in time produce 
realisations of white noise processes with zero means and with Q and R covariance matrices, as described by 
Akin et al. (2006) and Jafarzadeh et al. (2012).

3.3. The EKF algorithm
Similarly to the regular Kalman filter, the EKF is an iterative algorithm and consists of a prediction step, which is 
followed by a correction step. First, the predicted state +

−x̂k 1 can be calculated using the given non-linear function as 
follows: 

 x f x uˆ ˆ ,k k k1 ( )=+
− +

  (19)

where +x̂k  is the corrected state vector. At the end of the prediction step, the predicted error covariance matrix +
−Pk 1 is 

calculated by the following expression:

 P F P F Qk k k k
T

1 = ++
− +  (20)

where +Pk  is the corrected error covariance matrix. Fk is the Jacobian of the given non-linear expression and it is 
defined as follows:

 F f x u
x

( , )
k

x x u uˆ ,k k

=
∂

∂
= =+



. (21)

In the correction step, equations of the regular discrete Kalman filter may be applied as follows:

 K P H HP H Rk k
T

k
T

1 1 1

1( )= ++ +
−

+
− −

 (22)

 x x K z Hxˆ ˆ ˆk k k k k1 1 1 1 1( )= + −+
+

+
−

+ + +
−  (23)

 ( )= −+
+

+ +
−P I K H Pk k k1 1 1  (24)

where Kk+1 is the Kalman gain at time k + 1.
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3.4. The UKF algorithm
Similarly to the EKF, UKF is also an iterative algorithm; however, it applies more complex iterations. In the prediction 
step, the UKF applies the UT in order to select a set of sigma points σ +x

i
ˆ
( )

k
 with the same mean +x̂k  and covariance +Pk  as 

the state vector xk. Similarly to Jafarzadeh et al. (2012) and Biswas et al. (2017), the general UT is applied in this 
work, which means that the number of sigma points is 2n + 1, where n is the number of state variables. For general 
UT, the sigma points can be defined as follows:

 σ =

=

+ + κ



 =

− + κ



 = +
















( )

+

+ +

+ +

−

+

x i

x n P i n

x n P i n n

ˆ for 0

ˆ ( ) for 1,...,

ˆ ( ) for 1,...,2

x
i

k

k k
i

T

k k
i n

T
ˆ ( )

( )

k
 (25)

where ( )+ κ +n P( ) k
i

T

( )
 is the i th row of matrix ( )+ κ +n P( ) ,k

T

 and κ is a design parameter. In Eq. (25), the term 

+ κ +n P( ) k  is the Cholesky factorisation of matrix (n + κ) +Pk , as described in the studies by Jafarzadeh et al. (2012) 
and Lešić et al. (2012).

Sigma points have weights that depend on the design parameter κ, according to the following expression:

 W n
i

n
i n

for 0

1
2( )

for 1,...,2
.i( ) =

κ
+ κ

=

+ κ
=











 (26)

The projected sigma points can be calculated by using the known non-linear transformation (17) as follows:

 f u, .
x
i

x
i

kˆ
( )

ˆ
( )

k k1
σ = σ



+

− +
  (27)

The predicted state +
−x̂k 1 may be calculated from Eqs. (26)–(27):

 x Wˆ .k
i

i

n

x
i

1
( )

0

2

ˆ
( )

k 1
∑= σ+

−

= +
−  (28)

At the end of the prediction step, the predicted error covariance matrix +
−Pk 1 is calculated by the following equation:

 P W x x Qˆ ˆ .k
i

x
i

k x
i

k

T

i

n

1
( )

ˆ
( )

1 ˆ
( )

1
0

2

k k1 1
∑= σ −



 σ −

















++
−

+
−

+
−

= +
−

+
−  (29)

In the correction step of the UKF algorithm, Eqs. (22)–(24) of the discrete Kalman filter might be applied.

4. The applied speed sensorless control algorithm
In this section, the applied speed sensorless DRFOC algorithm is presented. This algorithm is used for the 
control of the electromagnetic torque and flux of a squirrel-cage induction machine, as depicted in Figure 1.  
The described DRFOC architecture is suitable to develop an estimator-based speed sensorless control algorithm. 
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The estimator of the control algorithm has been implemented by using the EKF and UKF algorithms, which are 
described in Section 3.

Fig. 1. Block diagram of the estimator-based speed sensorless DRFOC algorithm

In the applied control scheme, the ia and ib phase currents are measured, and the ic phase current is calculated 
according to Kirchhoff’s law for Y-circuit (ia + ib + ic = 0 A). From the phase currents, the ids and iqs stator current 
components are calculated with the Clarke and Park transformations. The applied form of the Clarke and Park 
transformation matrices are as follows:

 =

− −

−



























=
ϕ ϕ

− ϕ ϕ



















C P2
3

1 1
2

1
2

0 3
2

3
2

1
2

1
2

1
2

cos sin 0

sin cos 0

0 0 1

.
e e

e e
and  (30)

The position of the rotor flux is estimated by the estimator and applied for Park transformation, as can be seen in 
Figure 1. Apart from the rotor flux position, the estimator estimates the d and q components of the stator current, the 
magnetising current, the position and speed of the rotor as well as the load torque. Input variables of the estimator 
are the stator currents and the known stator voltages, which are interpreted in the applied rotating reference frame 
that is aligned to the rotor flux. However, the estimator algorithm is written in its discrete form, and thus, the non-
linear state transition equation must be written in discrete form too, similarly to (17). The discrete form of Eq. (15) 
may be written as follows:

 x f x u T x,k k k s k1 ( )= ++  (31)

where Ts is the sampling time of the discrete system.
The estimated d and q components of the stator current are used for feedback. Through the d and q components 

of the stator current, the flux of the machine and the electromagnetic torque, respectively, can be controlled.
The current references for the DRFOC algorithm can be calculated by the following equations: 

 = ψ =
ψ

i
L

i
N
L
L
T

  2
3

1
ds
ref

ref

m
qs
ref r

m

e
ref

ref
and  (32)

where ψref is the flux reference and Te
ref  is the electromagnetic torque reference.

One can see that Eqs. (1) and (2) are cross-coupled through Eqs. (5) and (6). This is an adverse property of 
the machine model regarding it from the control design point of view. In order to mitigate this problem, an additional 
decoupling algorithm is needed. For the derivation of this algorithm, let us rewrite the d-axis stator voltage equation 
as follows:
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 v R i L i
L
L

i L
R
L

i

i
id

dt
d
dtds s ds s ds

v

m

r
mr s r
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mr
qs

v

2

ds
lin

ds
nonlin

= + σ








 + − σ ω +





















� ���� ���� � ������� �������

 (33)

where vds
lin  is the linear part, and vds

nonlin  is the non-linear part of the equation. The same problem applies to the q-axis 
stator voltage equation, which can be split similarly:

 v R i L i
R
L

i

i
L i

L
L
id

dtqs s qs s qs

v

r
r

r

qs

mr
s ds

m

r
mr

v

2

qs
lin

qs
nonlin

= + σ








 + ω +









 σ +























� ���� ���� � ������� �������

 (34)

where vqs
lin  is the linear part, and vqs

nonlin  is the non-linear part of the equation. By using the decompositions of Eqs. 
(33) and (34), current controllers can be designed for the linear part of the plants, and the non-linear parts can be 
decoupled by an additional algorithm, as can be seen in Figure 1. The decoupling algorithm may be implemented 
using vds

nonlin  and vqs
nonlin , which may be calculated from the estimated stator currents, the magnetising current and the 

rotor electrical speed.
From vds and vqs, the phase voltages of the machine can be obtained through multiplications by P –1 and C –1, and 

the outputs of the inverse Clarke transformation block can be fed as control signals to the inverter.

5. Experimental and simulation results
In this section, experimental and simulation results of the estimator-based speed sensorless DRFOC algorithm are 
presented, where applications of the EKF and UKF algorithms are compared. First, the general conditions and the 
applied nominal model parameters are described. Afterwards, regular step response experiments and simulations 
are performed. In the last subsection, results of step response simulations besides stochastically varying load 
torque are presented.

5.1. General conditions, parameters and experimental setup
This subsection describes the general conditions, the parameters applied in the experiments, the simulations and 
the experimental setup.

For the experiments, a Lenze MCA 10I40-RS0B2-Z0C0-STBS00N-R0SU induction machine is applied, which has 
0.8 kW rated power. The nominal parameters of the machine are N = 2, Rs = 4.7 Ω, Rr = 5.2 Ω, Ls = 0.1788 H, Lr = 0.1790 H, 
Lm = 0.1690 H, θ = 0.00024 kgm2, D = 0.0011 Nms/rad, T0 = 0.075 Nm. These are applied in the simulations as well.

The sample time of the control algorithm is Ts = 10–4 s, and the sample time of the simulation model is Tsim = 
10–5 s. Design parameters of the EKF and the UKF estimators are QEKF = diag{2.18·10–3, 0.78, 1.11·10–5, 0.15, 1.26·10–3, 
4.05, 3.08·10–4}, REKF = diag{78.24, 78.24} and κ = 1, QUKF = diag{1.77·10–4, 3.17·10–2, 2.49·10–5, 0.10, 3.44·10–3, 2.22·10–5, 
5.34·10–4} and RUKF = diag{5.03, 5.03}. The noise covariance parameters QEKF, REKF, QUKF and RUKF are determined by 
exactly the same heuristic procedure, similarly to that described by Zerdali and Barut (2017). The initial value of the 
state vector is x0 = [0 0 0.01 0 0 0 0]T, where ≠x  00

(3)  in order to avoid division by zero in Eq. (13). The initial value of 
the noise covariance matrix is P0 = diag{10–4,…,10–4}. The proportional and integral gains of the current controllers 
are P = 4.7 and I = 1148.0, respectively.

The scheme of the experimental setup may be seen in Figure 2. In order to execute the UKF algorithm in real time, 
a distributed system is applied based on a high-performance Simulink Real-Time target computer, which is built on 
a HP BX383AV PC with Intel Core i5-2500 @3.3 GHz CPU. In addition to the execution of the control algorithm, the 
target computer performs the measurement data acquisition as well. The target computer receives the measured 
currents from and sends the excitation voltages to the Texas Instruments (TI) TMS570LC437 microcontroller 
through synchronised communication. The microcontroller performs the measurements and calculates the Pulse-
Width Modulation (PWM) signals for the TI DRV8301-HC-EVM power stage. The experimental setup is monitored 
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by a host personal computer (PC), which is connected to the real-time target by Transmission Control Protocol/
Internet Protocol (TCP/IP) connection.

Fig. 2. Experimental setup

5.2. Step response simulations and experiments
In this example, step response simulations and experiments are performed with =T  0.18e

ref  Nm torque and ψref = 
0.1 Wb flux references. Both the EKF and the UKF are used as the state estimator in the control algorithm, and the 
results are compared.

The results can be seen in Figures 3–5. For the sake of brevity, only the q component of the current is investigated 
in Figure 3. One may see that the ramp-up of iqs is slightly smoother with the EKF than with the UKF, but both of 
the algorithms perform adequately during the starting transient. It can also be concluded that the simulation results 
follow the experimental results as far as can be compared with the noisy measurements. In the steady state, both 
algorithms work equally well, as can be seen in Figures 4 and 5, which compare the measured and the estimated 
variables on a longer time span.

Fig. 3. Comparison of step response simulations and experiments using EKF (a) and UKF (b)
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Fig. 4. Comparison of actual and estimated variables (EKF)

5.3. Step response simulation with stochastically varying load
In this example, estimation of the load torque and performance of the torque control are investigated 
besides stochastically varying load torque. This kind of load variations hold significant importance regarding 
the possible applications of electric drive systems. For example, vehicle drives operating under harsh 
conditions may face stochastically varying rolling resistance, as mentioned by Vantsevich and Blundell 
(2015). In order to realistically approximate the stochastically varying load torque, a Wiener process is  
applied.

For the definition of the Wiener process in this problem, let us define an infinite sequence of independent, 
identically distributed random variables with normal distribution as

 , , , ,1 2ξ ξ ξ… ∞  (35)

where E[ξi] = 0 and Var(ξi) = ε, ∀ ∈i  and where E[⋅] and Var(⋅) denote the expected value and the variance operators. 
By using Eq. (35), we may define the stochastic process as follows:

 ∑ ξ=
≤ ≤ 

W t
n

( ) 1 .n i
i nt1

 (36)

Applying the central limit theorem on Eq. (36), we obtain the following expression: 

 W t W t( ) ( )n
n

=
→∞

 (37)
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which is a Wiener process, as shown by Lalley (2001). However, since the applied numerical simulation method is 
discretised in time, Eq. (36) is applied in the simulation model as an approximation of Eq. (37) with a reasonably 
high n.

In order to utilise Eq. (36) for load simulation, let us define wn(t) as a realisation of Wn(t). By using this definition, 
a certain realisation of the stochastically varying load torque results as follows:

 = +T t T w t( ) ( )load load n0
 (38)

where Tload0
 is a static load component. By using (38), various simulations are performed with =T 0load0

 Nm,  
n = 1/Tsim and the variance value ( )ε = T t/2 /e

ref 2
. This particular value of ε has been set according to the characteristic 

properties of the possible random changes in Tload and considering that Tload should not exceed Te
ref  beyond a 

certain probability. The above expression for ε can be derived as follows. Let us start from the variance of the 
Wiener process using the approximation Eq. (36):

 W t
n

Var ( ) Var 1
n i

i nt1
∑ ξ( ) =















≤ ≤ 

 (39)

Fig. 5. Comparison of actual and estimated variables (UKF)
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Considering that n1/  is a linear transformation in Eq. (39) and that all ξ ∀ ∈i,i  are uncorrelated, we can apply the 
Bienaymé equality according to Loeve (2012, p. 12), by which Eq. (39) might be rewritten as follows: 

 W t
n n

nt tVar ( ) 1 Var 1 Var .n
i nt

i i
1
∑ ξ ξ( ) ( ) ( )= ≈ = ε

≤ ≤ 

 (40)

Since ξi has been defined with normal distribution, it follows that Wn(t) is normally distributed as well1, with variance 
tε. Considering the properties of the normal distribution, let it be required that Tload should not exceed Te

ref  besides 
the probability of 0.9545,2 which means that the inequality tε  ( )≤ T / 2e

ref 2
 must be satisfied. From this, the above 

choice of ε follows straightforwardly.
Simulation results besides different realisations of the stochastically varying load torque, can be seen in Figures 6  

and 7. Figure 6 shows the estimation of the load torque. It can be seen that after a short overshoot at the beginning, 
the UKF provides better performance as it follows Tload closer than the EKF.

Fig. 6. Load torque estimation besides different realisations of Wn(t)

Figure 7 shows the performance of the torque controllers. One may conclude that the UKF-based control method 
provides significantly better performance. In the steady state, the reference torque can be maintained with different 
errors using EKF and UKF. We may statistically quantify the disturbance rejection capabilities of the control system 
by introducing the control error eTe and fitting a probability density function to eTe, t > 0.3 s, and calculating the variance 
of it. One can see that eTe is approximately normally distributed as well and ( )eVar Te

 is bounded besides different 
realisations of the stochastically varying load torque. As can be seen in Table 1, there are significant differences 
between the variances of the EKF- and the UKF-based results.

1  The sum of independent normally distributed random variables is a normally distributed random variable as well. See Eisenberg and Sullivan 
(2008).

2  This value results from the basic properties of the normal distribution, also known as the probability corresponding to the four sigma range or as 
the 68–95–99.7 rule; e.g. see Grafarend (2006, p.553).
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Table 1. ( ) >e tVar , 0.3Te
 s besides different realisations of Wn(t) 

Realisations 1 2 3 4

( )eVar Te
 with EKF 5.8760·10–6 8.0138·10–6 8.4543·10–6 6.5985·10–6

( )eVar Te
 with UKF 1.0254·10–6 2.4629·10–6 1.4295·10–6 1.5731·10–6

6. Conclusion
In this paper, an estimator-based speed sensorless DRFOC algorithm has been introduced for induction machines. 
The state estimator of the applied control method is based on a seventh-order non-linear state space model of the 
machine, which provides a detailed description of it. Among many other state variables, the estimator estimates the 
load torque as well. By using this feature, the speed sensorless control algorithm can provide satisfactory control 
performance besides varying load.

In order to estimate the state variables, two different estimator algorithms are applied and discussed, 
namely, the conventional EKF and the more advanced UKF. For the comparison of control performances 
of the EKF- and the UKF-based control methods, various simulations and experiments have been  
implemented.

Step response simulations and experiments show that the UKF-based control algorithm provides similar 
dynamic performance as the EKF-based one. Besides stochastically varying load torque disturbance, however, 
the performance advantage of the UKF-based algorithm becomes apparent. In that case, the performance of the 
EKF-based algorithm degrades as it estimates the load and keeps the torque reference with higher errors than 
the UKF.

Fig. 7. Torque control performance besides different realisations of Wn(t)
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